Dispersive limits in the homogenization of the wave equation

نویسنده

  • GRÉGOIRE ALLAIRE
چکیده

We address the homogenization of a scalar wave equation with a large potential in a periodic medium (sometime called the KleinGordon équation). Denoting by E the period, the potential is scaled as ~-2. The homogenized limit depends on the sign of the first cell eigenvalue Ai. If Àl = 0, then the homogenized problem is a standard wave equation. If 03BB1 ~ 0, then, upon changing the time scale to focus on large times of order ~-1, we obtain dispersive homogenized problems, i.e. equations which are not of the second order in time. If 03BB1 0, the homogenized equation is parabolic, while for Ai > 0, the homogenized equation is of Schrôdinger type. RÉSUMÉ. Nous étudions l’homogénéisation d’une équation scalaire des ondes avec un fort potentiel dans un milieu périodique (ou équation de Klein-Gordon). Si l’on désigne par E la période, le potentiel est de l’ordre de E-2. Le comportement homogénéisé limite dépend du signe de la première valeur propre 03BB1 du problème de cellule. Si Ai = 0, alors le problème homogénéisé est une équation des ondes usuelle. Si 03BB1 ~ 0, alors, sous réserve de changer l’échelle de temps afin d’observer les grands temps d’ordre E-1, on obtient des limites dispersives, c’est-à-dire des équations homogénéisées qui ne sont pas du deuxième ordre en temps. Si 03BB1 0, l’équation homogénéisée est parabolique, tandis que si 03BB1 > 0, l’équation homogénéisée est du type de Schrôdinger. Annales de la Faculté des Sciences de Toulouse Vol. Xll, n4,:zuu3 Pl (*) Reçu le 26 août 2003, accepté le 28 novembre 2003 (1) Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau, France. E-mail: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of G'/G-expansion method to the (2+1)-dimensional dispersive long wave equation

In this work G'/G-expansion method has been employed to solve (2+1)-dimensional dispersive long wave equation. It is shown that G'/G-expansion method, with the help of symbolic computation, provides a very effective and powerful mathematical tool, for solving this equation.

متن کامل

Complexition and solitary wave solutions of the (2+1)-dimensional dispersive long wave equations

In this paper, the coupled dispersive (2+1)-dimensional long wave equation is studied. The traveling wave hypothesis yields complexiton solutions. Subsequently, the wave equation is studied with power law nonlinearity where the ansatz method is applied to yield solitary wave solutions. The constraint conditions for the existence of solitons naturally fall out of the derivation of the soliton so...

متن کامل

Finite Element Heterogeneous Multiscale Method for the Wave Equation: Long Time Effects∗

A new finite element heterogeneous multiscale method (FE-HMM) is proposed for the numerical solution of the wave equation over long times in a rapidly varying medium. Our new FE-HMM-L method not only captures the short-time behavior of the wave field, well described by classical homogenization theory, but also more subtle long-time dispersive effects, both at a computational cost independent of...

متن کامل

Effective models for the multi- dimensional wave equation in heterogeneous media over long time and numerical homogenization

A family of effective equations that capture the long time dispersive effects of wave propagation in heterogeneous media in an arbitrary large periodic spatial domain Ω ⊂ Rd over long time is proposed and analyzed. For a wave equation with highly oscillatory periodic spatial tensors of characteristic length ε, we prove that the solution of any member of our family of effective equations are ε-c...

متن کامل

Dispersive homogenized models and coefficient formulas for waves in general periodic media

We analyze a homogenization limit for the linear wave equation of second order. The spatial operator is assumed to be of divergence form with an oscillatory coefficient matrix aε that is periodic with characteristic length scale ε; no spatial symmetry properties are imposed. Classical homogenization theory allows to describe solutions uε well by a non-dispersive wave equation on fixed time inte...

متن کامل

Diffractive Behavior of the Wave Equation in Periodic Media: Weak Convergence Analysis

Abstract. We study the homogenization and singular perturbation of the wave equation in a periodic media for long times of the order of the inverse of the period. We consider inital data that are Bloch wave packets, i.e., that are the product of a fast oscillating Bloch wave and of a smooth envelope function. We prove that the solution is approximately equal to two waves propagating in opposite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017